

AFRL-RI-RS-TR-2008-203
Final Technical Report
July 2008

UNIFIED PLATFORM-INDEPENDENT AIRBORNE
NETWORKING ARCHITECTURE FOR VIDEO
COMPRESSION

University of California, Berkeley

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-203 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

DAVID HENCH WARREN H. DEBANY, JR
Work Unit Manager Technical Advisor
 Information Grid Division

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

MAR 07 – DEC 07
4. TITLE AND SUBTITLE

UNIFIED PLATFORM-INDEPENDENT AIRBORNE NETWORKING
ARCHITECTURE FOR VIDEO COMPRESSION

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-07-2-0070

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Kannan Ramchandran

5d. PROJECT NUMBER
BATC

5e. TASK NUMBER
DI

5f. WORK UNIT NUMBER
SV

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Berkeley
2150 Shattuck Ave. Room 313
Berkeley, CA 94704-5940

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGC
525 Brooks Rd
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/RIGC

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-203

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-3891

13. SUPPLEMENTARY NOTES

14. ABSTRACT
It is highly desirable to have a video coding framework that can flexibly distributed coding complexity between the video encoder
and decoder. However, today’s video compression techniques impose a rigid computational complexity distribution between the
video encoder and decoder. Specifically, video decoders are very simple but encoders are computationally complex as they need to
carry out motion estimation and mode decision. Distributed video coding has shown great potentials in enabling flexible complexity
distribution between the video encoder and decoder. Previous work on distributed video coding has studied two extreme operating
points of complexity distribution: 1) Complex encoder with light-weight decoder to achieve maximum compression efficiency and 2)
Light encoder and complex decoder to achieve robustness against transmission packet drops (at the cost of reduced compression
efficiency). In this project, our main goal is to explore the middle ground between these two extreme points. In particular, we study
the effect of doing coarse motion search at the encoder.

15. SUBJECT TERMS
 video compression, video encoding, video decoding

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

26

19a. NAME OF RESPONSIBLE PERSON
David Hench

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-4540

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents
Summary ...1

Introduction ... 3

Methods, Assumptions, and Procedures ... 5

Distributed source coding background ... 5

Review of PRISM ... 6

Proposed method ... 7

Encoder ... 7

Decoder ... 12

Results and Discussion ... 14

Conclusions ... 20

References ... 21

List(s) of Symbols, Abbreviations, and Acronyms ... 22

Figure 1: X and Y are correlated sources. X is the source that the encoder wants to transmit. Y is a
correlated source (side-information), available only at the decoder. (a) Both encoder and decoder access
and use Y in order to compress X. (b) Only the decoder accesses Y. Using distributed source coding
principles, it is possible to compress X as efficiently in this case as in case (a). .. 5

Figure 2: Block diagram of previous PRISM encoder ...7

Figure 3: Block diagram of previous PRISM decoder ...7

Figure 4: Illustration of proper decoder motion search...13

Table 1: Study of effect of full encoder motion search on reducing decoding complexity 8

Table 2: Study of effectiveness of motion estimation of various granularities in reducing decoding
complexity ...9

i

Summary
To target a heterogeneous range of video encoding and decoding platforms, it is highly desirable to have a
video coding framework that can flexibly distributed coding complexity between the video encoder and
decoder. However, today’s state-of-the-art video compression techniques impose a rigid computational
complexity distribution between the video encoder and decoder. Specifically, video decoders are very
simple but encoders are computationally complex as they need to carry out motion estimation and mode
decision. There have been a number of recent works on video coding using distributed source coding
(DSC) principles, often abbreviated as distributed video coding. They have shown great potentials in
enabling flexible complexity distribution between the video encoder and decoder.

In our previous work on distributed video coding, we have studied two extreme operating points of
complexity distribution:

1. Complex encoder with light-weight decoder to achieve maximum compression efficiency given a
transmission channel condition, and

2. Light encoder and complex decoder to achieve robustness against transmission packet drops (at
the cost of reduced compression efficiency).

In this project, our main goal is to explore the middle ground between these two extreme points. In
particular, we study the effect of doing coarse motion search at the encoder. By doing coarse motion
search at the encoder, we would like to achieve two goals:

1. Reduce the decoding complexity, and
2. Improve rate-distortion performance.

As a high-level summary, we investigated the effect of having motion search of various levels at the
encoder, implemented hierarchical coarse motion search at the encoder, improved the encoder classifier to
improve rate-distortion performance, and changed the decoding process to make use of the motion search
result at the encoder.

We have the following main findings:

1. Not all sequences can benefit from encoder motion search under the current framework.
Sequences that can benefit from encoder motion search are the ones with a certain level of motion
intensity.

2. For sequences with a certain level of motion intensity, complexity tradeoff between the encoder
and the decoder can be achieved. When the encoder carries out proper hierarchical motion search,
the decoding motion search complexity can be reduced by 50-80%, such as in football, Stefan and
garden sequences.

3. If the sequence also has smooth motion, up to 1 dB gain in RD performance can be achieved.
This is because the decoder is now able to find a much better quality predictor (or side

 1

information) using the coarse motion vector provided by the encoder. This is not true for
sequences with irregular motion, such as football sequence. This is because the gain in video
quality is offset by the much higher rate used to encode motion vector compared to sequences
with smoother motion.

4. When there are transmission packet drops, in general, the higher the packet drop rate is, the more
decoder motion searches are needed and the lower the decoded PSNR will be. For sequences with
very irregular motion, such as football, the motion vectors become useless when the motion-
compensated predictor is not correctly reconstructed because the motion vector provides very
little clue on where to find a best predictor two frames ago. This results in drastically increased
decoding complexity for such sequences as packet drop rates goes up.

 2

Introduction
Current video compression technologies based on motion-compensated predictive coding (MCPC), that are part
of video coding standards like MPEG and H.264, have a complexity distribution that is somewhat rigid, namely
a complex encoder and a light decoder. These systems derive their compression efficiency by using
computationally intensive motion-estimation at the encoder, the dominant complexity component in the system.

This architecture made sense when the primary drivers of video compression technology were TV broadcast
and heavy-server-to-light-client video download. However, with the current push towards a much wider range
of encoding platforms, ranging from camera-phones to surveillance cameras to heterogeneous UAV platforms,
video coding systems are being increasingly hampered by the inflexibility of the MPEG architecture, which
demands computationally complex encoders. Specifically, the MPEG architecture is not well suited for the
setup where the encoders is battery-constrained, such as a mobile phone and low-power surveillance wireless
camera, whereas the decoder is a much more capable Pentium-powered computing unit or a high-end PC.

Simultaneously, with the proliferation of wireless networks, there is high demand that video be transmitted
reliably over channels characterized by severe fades, packet drops, and temporary channel outages. In
particular, the Airborne Network will not only have much higher bit error rates as compared to a wired link but
also highly variable error rate due to distance, fading, and the influence of EMI. These channels severely impair
the performance of MCPC-based systems like MPEG, which rely on successful transmission of all the motion
compensated prediction differences between the current frame and the previous frame for effective compression.
When the previous frame is decoded erroneously (due to channel losses), the encoder and decoder get out of
synch, creating mismatch or drift between the two ends (see Figure 1). As MPEG-style architectures rely on a
large dependency prediction chain for their performance, this drift accumulates for each succeeding frame,
resulting in potentially catastrophic video quality degradation.

We aim to design and develop a fundamentally new flexible and unified video coding architecture to:

• Accommodate a wide range of computational platforms at encoder and decoder; and
• Design up-front for robustness and in-built immunity to transmission channel noise.

We propose to move away from the conventional predictive coding framework of MPEG and H.264, and
instead adopt a new paradigm built on principles of distributed source coding (DSC) from multi-user
information theory. Distributed source coding based video coding, often abbreviated as distributed video coding,
has been an active area of research. It has shown great potentials in a wide range of applications, such as low-
complexity encoding, robust real-time video transmission, scalable video and multiple-camera video coding. In
this work, we focus on two specific benefits of the distributed video coding framework: flexible distribution of
complexity, and robust real-time video transmission.

In our previous work on distributed video coding, we have studied two extreme operating points of
complexity distribution:

 3

1. Complex encoder with full motion search and light-weight decoder (Wang, Prabhakaran, &
Ramchandran, 2006): achieve maximum compression efficiency given a transmission channel
condition, and

2. Light encoder with no motion search and complex decoder (Puri & Ramchandran, PRISM: A
New Robust Video Coding Architecture Based on Distributed Compression Principles, 2002),
(Puri, Majumdar, & Ramchandran, 2007): achieve robustness against transmission packet drops
(at the cost of reduced compression efficiency).

In this project, we aim to explore the middle ground between these two extreme points. In particular, we
study the effect of doing coarse motion search at the encoder. By doing coarse motion search at the
encoder, we would like to achieve two goals:

1. Reduce the decoding complexity, thus achieving complexity re-distribution between the encoder
and the decoder;

2. Improve rate-distortion performance.

 4

Methods, Assumptions, and Procedures
We first give a brief review of the main results of distributed source coding. We will then review the
details of the distributed video coding framework that we built upon. Finally we will detail the changes
we have made to the framework to achieve flexible complexity distribution while maintaining robustness
during transmission.

Distributed source coding background

Figure 1: X and Y are correlated sources. X is the source that the encoder wants to transmit. Y is a
correlated source (side-information), available only at the decoder. (a) Both encoder and decoder access and
use Y in order to compress X. (b) Only the decoder accesses Y. Using distributed source coding principles, it
is possible to compress X as efficiently in this case as in case (a).

Consider the problems depicted in Figure 1. The goal is to compress and send source X at the lowest rate
possible. Y is another source that is correlation to X. In Figure 3(a), the side-information Y is available
only to the decoder, while in Figure 3(b) it is available to both encoder and decoder. From information
theory (Cover & Thomas) we know that the rate region for the problem of Figure 3(a), when the side-
information is available to both encoder and decoder, is R ≥ H(X|Y), the conditional entropy of X given Y.
The surprising result of Slepian and Wolf (Slepian & Wolf, 1973) is that the rate region for the problem
of Figure 3(b), when the side-information is available only to the decoder, is also R ≥ H(X|Y). The overall
achievable rate region is:

RX ≥ H(X|Y)

RY ≥ H(Y|X)

RX + RY ≥ H(X,Y)

At the high level, in a video coding setup, one can imagine X to be the current video frame being encoded
and Y to be the previous decoded frame. The case where Y is only available at the decoder is precisely the
case where the previous frame gets corrupted during transmission. Since the encoder does not know
exactly which packets are corrupted, it has no way of knowing what the decoded frame will look like. The
Slepian-Wolf theorem tells us that as long as we can characterize the statistical correlation between the
current frame X and the previous decoded frame Y available at the decoder only, we will still be able to
correctly reconstruct X at the decoder with an encoding rate that is the same as when Y is available at the

 5

encoder. These results were extended to the lossy case by Wyner-Ziv (Wyner & Ziv, 1976) a few years
later (for the case when Y is known perfectly at the decoder). Again, X and Y are two correlated random
variables. The problem here is to decode X to its quantized reconstruction X’ given a constraint on the
distortion measure E[d(X; X’)] when the side information Y is available only at the decoder. In the special
case where the sources are memoryless Gaussian and when MSE is used as the distortion measure, the
Wyner-Ziv theorem shows that we can do just as well when Y is only available at the decoder. Further, in
(Pradhan, Chou, & Ramchandran, 2003) it was proved that for X = Y +N, only the innovations N needs to
be Gaussian for this result to hold.

Review of PRISM
We now review the encoding and decoding processes of our previous work that we built upon.

Figure 1 shows encoding block diagram of the existing PRISM encoder. For a detailed description of the
encoding process, please refer to (Puri, Majumdar, & Ramchandran, 2007). The key to its low encoding
complexity is the zero-motion classifier, which determines the mode of an 8x8 block using its zero-
motion mean square error (MSE). This mode will then dictate how many DCT coefficients are to be
syndrome-encoded and what syndrome code strength is needed for each of these coefficients.

To decode each block, the decoder needs to find the right predictor. This search starts from the co-located
block in the previous frame and spirals outwards. In theory, the decoder can carry out syndrome decoding
and filters out the wrong predictor using joint typicality check. However, in practice, this will not work
due to the short block length of the syndrome code. Instead, we use the CRC codes (a hash of the original
block) to detect whether syndrome decoded result is correct. To summarize, for each candidate predictor,
the decoder will first syndrome decode and then carry out CRC check. If the check fails, the decoder will
choose a different predictor. If the check passes, this predictor is a valid one and the decoder stops
searching (Figure 2). The syndrome decoded result can be used to reconstruct the original block. The
main complexity at the decoder comes from motion search followed by syndrome decoding. The need for
CRC also increases the encoding bit rate significantly.

 6

Figure 2: Block diagram of previous PRISM encoder

Figure 3: Block diagram of previous PRISM decoder

Proposed method
We will now details the changes we have made to the encoder and decoder to enable complexity shift
between the encoder and decoder and to improve the rate-distortion performance of the system.

Encoder
Changes at a glance:

• Investigated the effectiveness of motion search of various granularities on reducing decoding
complexity

• Implemented hierarchical motion search
• Implemented differential coding (within a slice or packet) of motion vectors
• Reduced CRC rate from 16 bit per block to 8 bit per block
• Retrained classifier

 7

Details of the changes:
1. Investigation of the effectiveness of motion search of various granularities on reducing

decoding complexity

The first investigation we carried out was to study the effect of having access to accurate motion
vectors at the decoder. To do this, we carried out full motion search at the encoder and transmitted the
motion vectors to the decoder. To decode each block, instead of doing a spiral search starting from
the co-located block in the previous frame, the decoder will now start the spiral search from the
motion compensated predictor. We assume a clean transmission channel and all the data packets are
received at the decoder.

We tested a few standard sequences including Foreman, Football, Flower Garden and Stefan, all in
CIF format (352x288). We encoded the first 15 frames (1 GOP, I-P-P-P structure) of each sequence
using I-frame quantization step size 5 and P-frame quantization step size 8.

Table 1: Study of effect of full encoder motion search on reducing decoding complexity

Motion
intensity

Sequence Encoder search
method

Number of encoder
motion search

Number of decoder
motion search

PSNR
(dB)

Low Foreman Zero motion 0 4198 36.04
Full motion 20004442 4139 36.36

Medium Flower
Garden

Zero motion 0 15784 34.93
Full motion 20004694 10929 35.55

High Stefan Zero motion 0 101890 35.47
Full motion 20005160 20402 35.85

Football Zero motion 0 35438 35.77
Full motion 20006491 10028 35.84

From the results summarized in Table 1, we see that motion vectors can indeed help reduce decoder
motion search complexity. The amount of reduction highly depends on the motion intensity of the
video sequence. Intuitively, in low-motion videos, the co-located block is oftentimes the best
predictor, thus any more motion search at the encoder will not help. For medium to high-motion
videos, on the other hand, the co-located block is rarely a good predictor for the current block. Hence
a large number of decoder motion searches are needed to find a qualified predictor.

2. Implemented hierarchical motion search

While we would like to shift the motion search operations from the decoder to the encoder, we are
still interested in keeping the encoder complexity as low as possible without sacrificing decoder
complexity or decoding quality. Thus we adopt the hierarchical fast motion search algorithm to
reduce encoder complexity. The hierarchical motion search we adopted consists of the following
steps.

Step 1: Motion search of 4-pixel accuracy within ± 16 pixels of the location of the current block.
Step 2: Motion search of 2-pixel accuracy around the predictor found by Step 1 within ± 8 pixels.
Step 3: Motion search of 1-pixel accuracy around the predictor found by Step 2 within ± 4 pixels.

 8

Step 4: Find the MSE between the current block and the motion compensated predictor found by Step
3. If MSE < threshold (20000 in current implementation), use this motion vector. Otherwise, discard
motion vector and carry out 1-pixel accuracy full motion search ± 16 pixels of the location of the
current block.

Note that this is a simplified version of the more sophisticated 3-step motion search, which requires
filtering the original picture and subsample twice to get QCIF and QQCIF version of the original
sequence (assuming CIF sequence). It terms of the total number of motion searches needed at the
encoder, this simplified version is not as good as the more sophisticated one. But it does not require
sampling or sub-sampling.

Table 2 compares the number of encoder motion search between the hierarchical search and the full
search. We see that hierarchical search takes only a fraction of the complexity that full motion search
requires. But at the decoder, the number of decoder motion searches needed and the decoded PSNR
are barely changed, indicating the quality of the predictors found by the hierarchical search is almost
as good as the full search.

An interesting finding is that Step 4 is crucial in this hierarchical motion search. To flexibly shift
complexity between the encoder and the decoder, we would like to reduce the encoder motion search
complexity and study the effect at the decoder. Ideally, we would like to see increased decoder
complexity but not higher complexity than when there is no motion search at the encoder.

Given the hierarchical motion search procedures, the seemingly most logical approach is to eliminate
steps backwards. However, an interesting and surprising observation is that Step 5 (the refinement
step) is actually crucial to performance. The reason is that fast motion search may occasionally
completely miss a good predictor and mistreat an outlier as a reasonable predictor. For sequences
with intensive and unpredictable motion, there are more outliers. When this happens, the best
predictors are typically quite far away from the outlier and up to more than 1000 decoder motion
searches are needed to correct a single block. The refinement step works perfectly to identify these
outliers and eliminate them. The following table represents this phenomenon. Here we will focus on
the medium to high motion sequences as motion searches are more important to them. We can see
that for Stefan and Football sequences, if the refinement step is skipped, the number of decoder
motion searches needed is actually even higher than when no motion vectors are provided at the
decoder at all. On the other hand, Flower Garden sequence has very smooth and predictable motion
due to smooth camera panning therefore there aren’t many outliers. As a result, even though Flower
Garden sequence has a certain level of motion intensity, hierarchical motion search works quite well
even without the refinement step.

Table 2: Study of effectiveness of motion estimation of various granularities in reducing decoding complexity

Motion
intensity

Sequence Encoder search
method

Number of
encoder motion
search

Number of
decoder
motion search

PSNR
(dB)

 9

High Stefan Zero motion 0 101890 35.47
Hierarchical without
refinement step

3108807 127991 35.76

Hierarchical 4076492 20742 35.84
Full search 20005160 20402 35.85

Football Zero motion 0 35438 35.77
Hierarchical without
refinement step

3119210 40903 35.77

Hierarchical 5119268 10076 35.83
Full search 20006491 10028 35.84

Medium Flower
Garden

Zero motion 0 15784 34.93
Hierarchical without
refinement step

3090263 11588 35.55

Hierarchical 4016450 10929 35.55
Full search 20004694 10929 35.55

3. Implemented differential coding (within a slice or packet) of motion vectors

In the current implementation, the predictor motion vector is that of the block to the left of the current
block. If the block to the left is INTRA or SKIP-coded, the motion vector of that block is assumed to
be zero. If a block is the left-most block of the row, the original value is stored. The Huffman table
used for motion vectors in H.263 is used for the entropy coding of the differential motion vectors.

4. Reduced CRC rate from 16 bit per block to 8 bit per block

Due to the presence of the motion vector, the decoder now has much better knowledge on where to
find an appropriate predictor (side information). The decoder can typically find a good predictor
within a couple searches while without motion vectors, the decoder sometimes needs thousands of
searches before finding a good predictor. This means that with motion vectors, the number of error
patterns the decoder could encounter due to decoding off of a bad predictor is much limited. As a
result, a much weaker CRC is needed. We find that 8-bit CRC suffice through experiments.

Note: a 16-bit CRC can identify 216 errors while an 8-bit CRC can only identify 28 errors.

5. Retrained classifier

The classifier contains the following information

• Threshold for MSE (in dB) between current block and reference block to determine which
class the current block belongs to.

• For each class
o The number of coefficients to syndrome encode.

 10

o The mean and variance of each coefficient that is to be syndrome-encoded (Note: The
variance will determine the strength of the channel code needed for the coefficient.
The mean is used only at the decoder to get estimation gain.)

In our previous work, the MSE between the current block and the co-located block in the previous
frame is computed. We call this zero-motion MSE. The classifier was also trained offline to threshold
the zero-motion MSE. In this work, the MSE between the current block and the motion-compensated
block in the previous frame is computed, which we call motion-compensated MSE. Clearly, a zero-
motion MSE and a motion-compensated MSE of the same value do not have the same meaning, i.e.
the best predictor of a block whose motion-compensated MSE is the same as another block’s zero-
motion MSE is likely to be worse than the best predictor of that block. This calls for retraining the
classifier with motion compensated MSE. The training was done in the following way:

• For each block, take DCT of both the current block and the motion-compensated predictor
block. For each DCT coefficient, find the difference between the current block and the
predictor block, which we term DFD (displaced frame difference).

• For each block, record its motion-compensated MSE . Then for each DCT coefficient of this
block, record the value of each coefficient and the value of DFD.

• Plot the histogram of motion-compensated MSE (in dB).
• Divide the range of MSE values into 16 regions/classes (one SKIP, one INTRA, 14 PRISM

modes), i.e. 15 thresholds. The lowest threshold (in dB value) is the INTRA threshold while
the highest threshold is the SKIP threshold. These two values are set based on heuristics. The
other 13 thresholds are set such that the number of blocks in each of the 14 classes is roughly
equalized.

• Group blocks by their class. For each class of blocks, find the mean and variance of each
DCT coefficient and DFD.

 11

Decoder
Changes at a glance:

1. Implemented motion vector differential decoding
2. Implemented motion search centered around appropriately motion-compensated predictor instead

of co-located previous block

Details of the changes:

1. Implemented motion vector differential decoding

This part is straight-forward. The decoding is done corresponding to the encoding.

2. Implemented motion search centered around appropriately motion-compensated predictor

instead of co-located previous block

When there are no transmission packet drops, this is relatively straight-forward. For the decoder
motion search, the search spirals and will start at the motion-compensated predictor in the previous
frame.

However, when there are transmission packet drops, this needs to be modified depending on the error
concealment strategy used. This is because when there are packet drops in the previous frame and the
motion-compensated predictor is part of the missing packet, how the missing blocks are filled up will
determine where best to start the motion search. In the current implementation, if a packet (a slice of
16x16 macroblocks) is lost, the co-located slice from the previous frame is pasted for error
concealment. Using this concealment strategy, it is no longer a good idea to start the decoder motion
search at the motion-compensated predictor if that predictor was part of a lost packet because the
block at that location was pasted from 2 frames ago and is oftentimes not a good predictor unless the
motion for the current block is zero. To better understand this, let us consider the example in Figure 3.
Clearly in this case, if the decoder search still starts at the position pointed to by the motion vector, i.e.
two blocks to the left, it will not find the best predictor right away. In fact, using spiral search, it will
take a large number of searches before reaching the best predictor. To solve this problem, the decoder
needs to track the decoding status of each block, i.e. whether it was lost, correctly reconstructed, or
failed to decode. When the decoder starts searching, it will first look at the status of the motion-
compensated predictor. If it’s correctly reconstructed1, then the decoder motion search will start from
there. Otherwise, some modifications are needed. In the current implementation, the decoder will

1 A block is considered correctly reconstructed if 1) it is an INTRA block and is received, or 2) it is a PRISM block and
it was received and successfully decoded, or 3) it is a SKIP block and the block it is pasting from was correctly
reconstructed.

 12

interpolate the motion vector and start motion search from the new motion-compensated predictor in
the previous reconstructed frame2.

One can see that if the concealment strategy is different, this method will need to be modified. For
instance, if when filling in the missing blocks, motion vectors of neighboring blocks that are received
are used to paste in motion-compensated blocks, we would not need to interpolate the motion vectors.
However, this method is only effective when the lost packets do not contain neighboring slices. For a
bursty channel where a few packets often get lost at the same time, this method may not work well.

Original Frame n-2 Reconstructed Frame n-2

Original Frame n-1 Reconstructed Frame n-1

Original Frame n

Current block

Packet dropped

Paste

Figure 4: Illustration of proper decoder motion search

2 Ideally, the decoder should search in Frame n‐2 using the interpolated motion vectors. But this requires a an
additional frame buffer. The current strategy works well if horizontal motion dominates, which is typically the case.

 13

Results and Discussion
Based on our study, we have the following main findings:

• Not all sequences can benefit from encoder motion search under the current framework.
Sequences that can benefit from encoder motion search are the ones with a certain level of motion
intensity.

• For sequences with a certain level of motion intensity, complexity tradeoff between the encoder
and the decoder can be achieved. When the encoder carries out hierarchical motion search, the
decoding motion search complexity can be reduced by 50-80%, such as in football, Stefan and
garden sequences.

• If the sequence also has smooth motion, up to 1 dB gain in RD performance can be achieved due
to being able to find a much better quality predictor (or side information) at the decoder using
motion vector. This is not true for sequences with irregular motion, such as football sequence,
because the rate used to encode motion vector is much higher than that of the sequences with
smoother motion.

• When there are transmission packet drops, in general, the higher the packet drop rate, the more
decoder motion searches are needed and the lower the PSNR. For sequences with very irregular
motion, such as football, the motion vectors become useless when the motion-compensated
predictor is not correctly reconstructed because the motion vector provides very little clue on
where to find a best predictor two frames ago. This results in drastically increased decoding
complexity for such sequences as packet drop rates goes up.

 14

1. Results using the first 30 frames of standard sequences with no transmission packet drops
a. Foreman sequence: 30 frames, 2 GOPs

QP Size
(KB)

PSNR Number of encoder
motion search

Number of decoder
motion search

8 254738 35.82 0 5512
 262178 36.05 10116948 6855
12 184143 33.65 0 3258
 192796 33.79 10116948 3986
16 147722 32.02 0 1982
 152726 32.12 10116948 2398

RD curve

 15

b. Stefan sequence: 30 frames, 2 GOPs

QP Size
(KB)

PSNR Number of encoder
motion search

Number of decoder
motion search

8 523302 35.34 0 126519
 524045 36.29 15728564 17985
12 379618 32.47 0 76451
 392499 33.36 15728564 14984
16 296295 30.25 0 44391
 312183 31.13 15728564 12213

RD curve

 16

c. Football sequence: 30 frames, 2 GOPs

QP Size
(KB)

PSNR Number of encoder
motion search

Number of decoder
motion search

8 339435 36.17 0 27844
 347724 36.39 17334404 5107
12 243739 33.74 0 24365
 251231 33.94 17334404 3419
16 191427 32.06 0 10882
 198385 32.24 17334404 2589

RD curve

 17

d. Garden sequence: 30 frames, 2 GOPs

QP Size
(KB)

PSNR Number of encoder
motion search

Number of decoder
motion search

8 728193 34.92 0 34296
 708378 35.65 18666260 17890
12 527708 31.61 0 24378
 528170 32.54 18666260 15710
16 405896 29.28 0 17641
 418198 30.26 18666260 13756

RD curve

 18

2. Results using first 30 frames of standard sequences with transmission packet drops

a. Stefan sequence
 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72
Zero encoder
motion search

Number of decoder
searches 126519 128601 132144 166212 328967 366458
PSNR 35.34 33.42 32.84 31.64 30.26 28.83

Coarse encoder
motion search

Number of decoder
searches 17985 62641 76634 101331 130414 175897
PSNR 36.29 33.11 32.31 30.55 28.96 27.69

b. Flower garden sequence

 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72
Zero encoder
motion search

Number of decoder
searches 34296 34842 35753 36690 38852 40514
PSNR 34.92 33.61 32.5 31.54 30.43 29.8

Coarse encoder
motion search

Number of decoder
searches 17890 18201 18242 18369 37522 37761
PSNR 35.65 34.19 33.01 31.99 30.22 29.59

c. Tempete sequence

 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72
Zero encoder
motion search

Number of decoder
searches 20945 49266 104603 123195 268678 330238
PSNR 34.38 33.62 33.09 32.44 31.98 31.22

Coarse encoder
motion search

Number of decoder
searches 16105 17374 17091 16602 20706 22935
PSNR 34.44 33.69 33.27 32.63 32.14 31.38

d. Football sequence

 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72
Zero encoder
motion search

Number of decoder
searches 27844 34913 36773 45272 47478 49171
PSNR 36.17 34.23 32.65 31.36 29.25 28.13

Coarse encoder
motion search

Number of decoder
searches 5107 16091 34724 47664 72493 86793
PSNR 36.38 34.29 32.49 31.14 28.92 27.81

 19

Conclusions
In this project, we investigated the possibility of flexibly distribute computational complexity between the
video encoder and decoder. We propose to carry out coarse motion search at the encoder in the distributed
video coding frame. The goal is to reduce decoding complexity and to improve rate-distortion
performance without sacrificing robustness to transmission packet loss.

We have the following main findings:

1. Not all sequences can benefit from encoder motion search under the current framework.
Sequences that can benefit from encoder motion search are the ones with a certain level of motion
intensity.

2. For sequences with a certain level of motion intensity, complexity tradeoff between the encoder
and the decoder can be achieved. When the encoder carries out proper hierarchical motion search,
the decoding motion search complexity can be reduced by 50-80%, such as in football, Stefan and
garden sequences.

3. If the sequence also has smooth motion, up to 1 dB gain in RD performance can be achieved.
This is because the decoder is now able to find a much better quality predictor (or side
information) using the coarse motion vector provided by the encoder. This is not true for
sequences with irregular motion, such as football sequence. This is because the gain in video
quality is offset by the much higher rate used to encode motion vector compared to sequences
with smoother motion.

4. When there are transmission packet drops, in general, the higher the packet drop rate is, the more
decoder motion searches are needed and the lower the decoded PSNR will be. Decoder motion
search needs to be modified significantly to make proper use of the coarse motion vectors. For
sequences with very irregular motion, such as football, the motion vectors become useless when
the motion-compensated predictor is not correctly reconstructed because the motion vector
provides very little clue on where to find a best predictor two frames ago. This results in
drastically increased decoding complexity for such sequences as packet drop rates goes up.

 20

References
Cover, T. M., & Thomas, J. A. Elements of Information Theory. New York: John Wiley and Sons.

Pradhan, S. S., Chou, J., & Ramchandran, K. (2003). Duality Between Source Coding and Channel
Coding and its Extension to the Side Information Case. International Transactions on Information
Theory , 1181-2003.

Puri, R., & Ramchandran, K. (2002). PRISM: A New Robust Video Coding Architecture Based on
Distributed Compression Principles. Allerton Conference on Communication, Control, and Computing.
Urbana-Champaign, IL.

Puri, R., Majumdar, A., & Ramchandran, K. (2007). PRISM: A Video Coding Paradigm With Motion
Estimation at the Decoder. IEEE Transactions on Image Processing , 2436-2448.

Slepian, D., & Wolf, J. K. (1973). Noiseless Coding of Correlated Information Sources. IEEE
Transactions on Information Theory , 471-480.

Wang, J., Prabhakaran, V., & Ramchandran, K. (2006). Syndrome-based robust video transmission over
networks with bursty losses. International Conference on Image Processing. Atlanta, GA.

Wyner, A. D., & Ziv, J. (1976). The Rate-Distortion Function for Source Coding with Side Information at
the Decoder. IEEE Transactions on Information Theory , 1-10.

 21

 22

List(s) of Symbols, Abbreviations, and Acronyms
• MCPC: motion-compensated predictive coding
• DSC: distributed source coding
• RD: rate-distortion
• PRISM: name of the distributed video coding codec we built upon
• PSNR: peak signal-to-noise ratio
• H(X): entropy of X
• H(X|Y): conditional entropy of X given Y
• H(X,Y): joint entropy of X and Y
• E[·]: expected value

	Summary
	Introduction
	Methods, Assumptions, and Procedures
	Distributed source coding background
	Review of PRISM
	Proposed method
	Encoder
	Decoder

	Results and Discussion
	Conclusions
	References
	List(s) of Symbols, Abbreviations, and Acronyms

